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THE CLOSURE PROBLEM: ONE HUNDRED YEARS OF DEBATE 
 
 

 
Abstract 
Back in 1897, Karl Pearson published a paper, which title began with the words "On a form of spurious 
correlation : : :". He was the first to point out the dangers which may befall the analyst when using 
conventional statistical methods with compositional data, known at that time as closed data. Many have 
been the scientists that have tried to understand, explain, and solve the problem since than, specially among 
geologists. But it was not until the 1980's that a solution was proposed, which has developed in a 
completely new methodology. This approach was the log-ratio approach, put forward by John Aitchison. In 
this contribution, we summarise the problems and the state-of-the-art in the new developments. 
 
1 Introduction 
Historically, compositional data were defined as data where the elements are non-
negative and sum to unity. Nowadays, compositional data are defined as data which only 
carry relative information. This latter definition is much broader, as it includes data which 
do not sum to a constant, like molar or molal compositions. Compositional data often 
arise from non-negative data (such as counts, area, volume, weights, expenditures) and 
are represented as data scaled by the total of the components, i.e. data subject to a 
constant sum constraint. Representing compositional data with a constant sum or as data 
which do not sum to a constant, is a simple change which does not alter the character of 
the data and which, in particular, does not modify the relative character of the information 
carried by them. The natural sample space for compositional data with D components is 
the regular D-part simplex, SD, and nowadays efforts concentrate in studying its geometry 
and its consequences in applications. 
 
As stated by Aitchison (2003) and Aitchison and Egozcue (2005), the statistical analysis 
of compositional data has gone through roughly four phases. The first three were mainly 
concentrated in the XXth century, while the fourth can be considered to be part of the 
present state-of-the-art. They are summarized below. 
 
2 Compositional data analysis in the XXth century 
The first phase lasted approximately from 1897 to 1960. It was initiated by a paper on 
spurious correlations by Karl Pearson (1897). He was the first to point out the danger of 
interpretation of standard (Pearson) correlation of ratios of data. Standard multivariate 
statistical analysis, as developed at the beginning of the XXth century, is an appropriate 
form of analysis for the investigation of problems with real sample spaces. There, the 
usual geometric concepts, calculus and, in general, mathematical operations taught at 
school, can be applied without problems. But a compositional vector, subject to a 
constant-sum constraint, is different from an unconstrained vector. Still, scientists and 
statisticians insisted over several decades in studying all the pitfalls of standard 
multivariate analysis, in particular correlation analysis, when applied to compositional 
vectors. The assertion, made by John Bacon-Shone (2011), that 



the key question is whether standard multivariate analysis, which assumes that the 
sample space is RD, is appropriate for data from this restricted sample space (the 
simplex) and if not, what is the appropriate analysis 

states the problem clearly. This question can naturally be extended to any multivariate 
data which have a constraint sample space and, to our understanding, the answer in all 
these cases is to apply the principle of working on coordinates (Mateu-Figueras et al., 
2011). 
 
Pearson (1897) identified the problem of “spurious correlation" between ratios of 
variables, showing that if X, Y and Z are uncorrelated, then X=Z and Y=Z will not be 
uncorrelated. Chayes (1960) linked Pearson's work and compositional data. He showed 
that the unit sum constraint induces negative correlations between components of the 
composition. However, he was unable to suggest a way to remove the effect of the 
constraint (Bacon-Shone, 2011). He initiated the second phase, the specific condemnation 
of using standard multivariate techniques with compositional data. In the second phase, 
which ranged roughly from 1960 to 1980, the geologist Felix Chayes was the primary 
critic of the application of standard multivariate analysis to compositional data. His main 
criticism was in the interpretation of product-moment correlation between components of 
a geochemical composition. He introduced the concept of negative bias, or closure 
problem, as the constant sum constraint forces negative correlations. Correlations of 
compositional data are not free to range between -1 and +1. 
(Sarmanov and Vistelius, 1959) supplemented the Chayes criticism in geological 
applications and (Mosimann, 1962) drew the attention of biologists to it. However, 
distortion of standard multivariate techniques, due in particular to spurious correlation, 
when applied to compositional data was the main goal of study and no alternative and 
appropriate methodology was found. 
 
The third phase started with the realization by Aitchison in the 1980s that compositions 
provide information about relative, not absolute, values of components. He stated that, to 
acknowledge the fact that information is relative, any reasonable statement about a 
composition has to be in terms of ratios of components (Aitchison, 1981a,b, 1982, 1983, 
1984b,a). The fact that log-ratios are easier to be handled mathematically than ratios, and 
that a logratio transformation provides a one-to-one mapping onto a real space, led him to 
take logs of the ratios. The logratio transformation approach was born. These 
transformations allowed the use of standard (unconstrained) multivariate statistics applied 
to transformed data. Inferences could be translated back into the simplex, leading to 
compositional statements. 
 
The key techniques in the third phase have been very popular and successful over more 
than a century; starting with the introduction of the logarithmic transformation for 
positive data by Galton (1879) and McAlister (1879), through variance-stabilizing 
transformations, the Box-Cox transformation (Box and Cox, 1964) and implied 
transformations in generalized linear modelling. The logratio transformation principle is 
based on the fact that information carried by compositions is relative and not the absolute 
one, and that there is a one-to-one correspondence between compositional vectors and 
associated logratio vectors. Any statement about compositions can be reformulated in 
terms of log-ratios, and vice versa. The transformation removes the problem of a 
constrained sample space, the unit simplex, and projects the data into an unconstrained 
space, multivariate real space. Original transformations were principally the additive 
logratio transformation (Aitchison, 1986, p. 113) and the centered logratio transformation 



(Aitchison, 1986, p. 79). The logratio transformation methodology seemed to be accepted 
by the statistical community (see for example the discussion of Aitchison (1982)). 
However, the actual impact in applied sciences was, and still is, limited. 
 
3 Compositional data analysis at the beginning of the XXIst century 
The fourth phase arises from the realization that the internal simplicial operation of 
perturbation, the external operation of powering, and the simplicial metric introduced by 
John Aitchison in the 80's, define an Euclidean or finite dimensional Hilbert space 
(Billheimer et al., 1997, 2001; Pawlowsky-Glahn and Egozcue, 2001). Many 
compositional problems can be investigated with this specific algebraic-geometric 
structure, which has led to the stay-in-the-simplex approach (Mateu-Figueras, 2003; 
Pawlowsky-Glahn, 2003). This staying-in-the-simplex point of view proposes to 
represent compositions by their coordinates (Mateu-Figueras et al., 2011), as they live in 
an Euclidean space, and to interpret them and their relationships from their representation 
in the simplex. Accordingly, the sample space of random compositions is identified to be 
the simplex with a simplicial metric and measure, different from the usual Euclidean 
metric and Lebesgue measure in real space.  
 
Two main principles of compositional data analysis are scale invariance and 
subcompositional coherence. Scale invariance obeys the intuitive idea that a composition 
provides information only about relative values not about absolute values. Therefore, 
ratios of components are the relevant entities to study. This concept is equivalent to the 
statement that all meaningful functions of a composition should be expressed in terms of 
ratios (Aitchison, 1997, 2002).  
 
Subcompositional coherence demands that two scientists, one using full compositions and 
the other using subcompositions, should make the same inference about relations within 
the common parts. Ratios within a subcomposition are equal to the corresponding ratios 
within the full composition. Subcompositions of compositions are the analog of marginals 
or sub-vectors in unconstrained analysis (Aitchison, 1986, p. 33).  
 
These principles, formulated by J. Aitchison in the eighties of the past century, find its 
formal counterpart in the simplex geometry, called Aitchison geometry. The main ideas 
can be summarized in: (a) proportional real vectors, with positive components, are 
equivalent; equivalence classes are compositions which can be represented by the 
constant sum vector (Aitchison, 1992; Barceló-Vidal et al., 2001; Egozcue et al., 2011). 
(b) Subcompositions can be expressed as orthogonal projections in the context of 
Aitchison geometry of the simplex (Egozcue and Pawlowsky-Glahn, 2005b). Point (a) is 
a formalization of the scale-invariance principle, while point (b) guarantees the 
requirements of subcompositional coherence. 
 
The simplex of D parts, SD, includes all positive real vectors adding up to a given 
constant. Absolute values of components in a composition are meaningless unless they 
are compared by ratios with other components. We use the notation SD, where the 
superscript is the number of parts of the composition. However, this superscript has been 
also used to indicate the dimension of the space, being D-1. 
 
Basic operations in the simplex are closure, perturbation and powering. 
 



Closure is a normalisation to a given constant κ and consists of selection of a 
representative of the equivalent vector of positive components. This constant is usually 
unity, percentage, ppm, or ppb. It does not affect the ratios between components, and κ is 
therefore unimportant.  
 
Perturbation (Aitchison, 1986, p. 42) is computed multiplying compositions component 
by component and, afterwards, normalizing to the closure constant.  
 
Perturbation has a neutral element, which is a composition with equal components. After 
closure these components are κ /D in a D-part simplex. Any composition perturbed by 
this neutral element remains unaltered. The inverse operation of perturbation, is merely 
dividing components of a composition by the corresponding components of the other 
composition; closure reduces the result to an element of the simplex. 
 
Perturbation in the simplex is analogous to translation in real space; it is a way to record 
change. Perturbation plays an important role also in describing imprecision, in the 
definition and computation of residual compositions in regression, and in other fitting 
techniques. From the mathematical point of view, perturbation is an Abelian group 
operation in the simplex. 
 
There is a second operation in the simplex, powering. It is the analog of scalar 
multiplication in real space and consists of raising each component to the constant and 
then applying closure to the result. The operations perturbation and powering define a D-
1 dimensional vector or linear space structure on SD (Pawlowsky-Glahn and Egozcue, 
2001). 
 
The structure can be extended to produce a metric vector space by the introduction of the 
simplicial metric or distance defined in Aitchison (1983) The distance is permutation and 
perturbation invariant, and the effect of powering is analogous to the effect of scalar 
multiplication in real spaces. It has also subcompositional dominance (Aitchison, 1992). 
This constitutes SD as a metric space. To measure angles between vectors in a metric 
space, an inner product is needed. Such an inner product, consistent with this metric, has 
been defined (Billheimer et al., 1997, 2001; Pawlowsky-Glahn and Egozcue, 2001, 2002; 
Egozcue et al., 2003). Together with the associated norm, the Euclidean structure of the 
simplex is obtained. We refer to this as the finite dimensional Hilbert space structure of 
the simplex, in order to distinguish it from the ordinary Euclidean structure of real spaces, 
and to the corresponding geometry in the simplex as Aitchison geometry, to distinguish it 
from the ordinary Euclidean geometry of real spaces. But they have completely analogous 
properties. 
 
As for any vector space, generating vectors, bases, linear dependence, orthonormal bases, 
and subspaces play a fundamental role. For instance, alr coordinates are not orthonormal, 
and many problems associated with this transformation are due to not taking this fact into 
account; the clr transformation corresponds to a generating system, which explains why 
the covariance matrix of clr coordinates is singular. 
 
Orthonormal bases are important because they provide a straightforward way of 
computing the coefficients or coordinates of a composition. The coefficients of a D-part 
composition x relative to an orthonormal basis, can be computed as the inner product of x 
with the elements of the orthonormal basis. They are called coordinates with respect to 



that basis. Coordinates are log-ratios. They are called isometric log-ratios (ilr) since they 
preserve the simplicial metric in SD (Egozcue et al., 2003). The transformation that 
assigns the coordinates to the composition x allows the computation of distances, norms, 
and inner products, as ordinary Euclidean ones when using the coordinate vectors. Within 
the ilr framework we can get different transformations corresponding to different 
orthonormal bases. A very intuitive way is based on a sequential binary partition (SBP) 
(Egozcue and Pawlowsky-Glahn, 2005b, 2006b). The approach leads to balances and to a 
graphical representation, called balance-dendrogram (Egozcue and Pawlowsky-Glahn, 
2005a, 2006a; Pawlowsky-Glahn and Egozcue, 2011), which is very helpful for 
interpretation. Coordinates are by definition orthogonal logcontrasts (Aitchison, 1986, 
p.85), involving ratios of compositional components in a more complicated way than 
simple log-ratios and so may pose more difficult problems in interpretation. Selection of 
adequate orthonormal bases plays a central role for data analysis. 
 
4 Conclusions 
We think that the interesting future of compositional data analysis is twofold. On the one 
hand, it will lie in statisticians searching for real applied problems. Applications reveal 
that there is still a long way to depurate statistical methods applied to compositional data 
and the interpretation of results. For instance, the development of robust statistical 
methods (Filzmoser and Hron, 2011) or the treatment of zeroes (Martín-Fernández et al., 
2011). On the other hand, the recent extension of the compositional approach to infinite-
dimensional spaces (Egozcue et al., 2006; van den Boogaart et al., 2010) has opened up a 
whole field of theoretical problems that can be tackled with this approach. We share the 
idea of Tchebycheff, expressed in his Theory of Maps, Real progress is made when 
theory and the needs of application go hand in hand. The state-of-the-art in this field of 
research can be found in a book (Pawlowsky-Glahn and Buccianti, 2011) to honour John 
Aitchison at his 85th birthday. 
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