

47. ročník sympozia Hornická Příbram ve vědě a technice

RECENT STATUS OF THE WISMUT REMEDIATION PROJECT

Dr. Stefan Mann, Dr. Michael Paul, Dr. Ulf Jenk

Wismut Remediation Area

Implementation of Closure and Remediation

- After a preliminary survey, the remediation focused on
 - five mining sites Ronneburg, Aue, Pöhla, Königstein, Gittersee
 - two processing sites Seelingstädt and Crossen
- I Majority of projects
 - Demolition of contaminated buildings and structures
 - Area clean-up,
 - Waste rock piles,
 - Industrial tailings ponds,
 - Underground and open pit mines,
 - Water treatment.

Scope of the closure program

37 km² operational areas incl. 2 mill sites

- **250 000 m³ Concrete** (0,2 1 Bq/g)
- **16 000 m³ Timber**; 7 200 t Wooden railway sleepers;
- 262 200 t Scrap metal (0,5 50 Bq/cm² (α-activity))

5 underground mines:

Schlema, Pöhla, Königstein, Gittersee, Ronneburg with a volume of 80 M m³ and 1400 km of tunnels and drifts to be cleaned

- 1,6 km² open pit mine at Ronneburg (84 M m³ open pit volume)
- **311 M m³ waste rock** piles, 48 piles Specific activity/Nuclide content: 0.2...2 Bq/g (Ra-226) Inventory: 20,000 t Uranium;
- 160 M m³ of tailings (mainly at Seelingstädt/Crossen);
 5.7 km² tailings pond surface; Specific Ra-226-activity: 10 Bq/g

Legal Requirements

- Mining Act
 - elimination of any considerable residual risk on site, especially securing geomechanical stability and
 - preparation of mining areas for re-utilisation after mine closure, in compliance with regional land use concepts
- Water Resources Act and Soil Protection Act
 - long-term protection of ground and surface waters and soil from contamination
- Atomic Act and subsidiary regulations (e.g. Radiation Protection Ordinance)
 - Justification and optimisation of any measures
 - Compliance with dose limits to workers and public
 - Individual dose to public < 1 mSv/a: action level and goal of remediation

Remediation of Waste Rock Dumps

- Either by relocation or by in situ stabilization
 - depending on the results of remedial investigations, feasibility study, environmental assessment, optimisation

Objectives

- Re-utilisation of the land (often restricted)
- Safekeeping of radioactive material
- Reduction of contaminated seepage water

In situ remediation of waste rock dumps:

- Reshaping to a long-term stable form and
- Capping with a soil cover designed to
 - reduce external radiation,
 - radon exhalation and
 - limit infiltration into the pile.
- The surface of the cover is vegetated to control erosion and to blend in with the surrounding landscape.

Waste Rock remediation, Schlema site WASTE DUMP 366

Waste Rock Dumps at the Ronneburg Site

At the Ronneburg site, most of the dumps were relocated into the close-by Lichtenberg open pit mine

Backfilling of the Lichtenberg Open Pit

- Operation: 1958 1977
- Area: 160 ha
- Length: 2 km
- Width: 1 km
- Volume: 150 Million m³

Seelingstädt Processing Plant

Waste Dump Covers

LOCATION	SCHLEMA (Saxony)	RONNEBURG (Thuringia)	RONNEBURG (Thuringia)	
Remediation object	366	Beerwalde	Lichtenberg	
Altitude	450 mNN	300 mNN 300350 mNN		
Precipitation	850 mm/a	650 mm/a	650 mm/a	
Cover System	2-layers	2-layers	2-layers	
Cover Thickness	1,0 m	1,9 m	1,6 m	
Design	2 x 0,45 m sealing / storage layer (mineral sub soil) 0,2 m revegetation layer (humus top soil)	0,4 m sealing layer 3 x 0,5 m storage layer	1,2 m loamy soil from interim storage 0,4 m revegetation layer	

Site Specific Waste Rock Covers

Remediation of Tailings Ponds: Baseline data

		SEELINGSTÄ	CROSSEN MILL			
Tailings Impoundment	CULMITZSCH A	CULMITZSCH B	TRÜNZIG A	TRÜNZIG B	HELMSDORF	DÄNKRITZ I
Tailings surface area (ha)	159	76	67	48	205	19
Tailings volume (Mio m³)	61	24	11	6	45	5
Solid mass (Mio t)	64	27	13	6	49	7
Max. tailings thickness (m)	72	63	30	28	48	23
U _{nat} in solids (t)	4800	2200	1500	700	5000	1000
U _{nat} in solids (t)	7.9	2.4	1.3	0.5	5.5	0.4
U _{nat} in pore water (mg/l)	0.3 3.9	1.0 16.5	1 19	1 20	2 30	10 85
Ra-226 in pore water (mBq/l)	5000	2300	630	N.A.	500 2000	N.A.

Remediation of Tailings Ponds

- Remediation steps of "dry" in-situ-stabilisation
 - Removal of the pond water consisting of precipitation, surface drainage and pore waters
 - Geotechnical stabilisation of the contaminated mud underneath,
 - (a) Placement of an **interim cover** on the tailings surface to provide the consolidation load and create a stable working platform;
 - (b) Reshaping of dams with respect to dam stability to the long term
 - (c) Construction of a stable surface contour providing suitable run off conditions for the surface water (Reshaping);
 - Capping of the surface with a final soil cover
 - **Re-vegetation** of the surface

Interim covering CULMITZSCH CASE

Recent status of the Wismut remediation project

Re-shaping and Final Covering TRÜNZIG CASE

2007

Closure of underground mines/mine flooding

1. Closure of operation, preparation for rebound

4a. Groundwater rebound complete, conventional WTP

2. Uncontrolled flooding

4b. Groundwater rebound complete, passive WTP

.

3. Controlled flooding, (conventional WTP)

5. Mine closure complete (no further action)

transient scenario

State of Remediation as of End of 2007, in %

UNDERGROUND

Abandonment of open cavities Plugging and sealing of shafts Backfilling mine workings (near surface)

ABOVE GROUND

Facilities/buildings demolished Mine dumps excavated/relocated Mine dumps/open pit capped Lichtenberg open pit filled Tailings ponds interim covering re-shaping final covering

Reclamation of areas

Status of the Remediation program

- Completion ~ 85 % using 78 % of the budget
- To be finished by 2015
- Objects w/ remaining risk potential have to be carefully monitored and maintained (institutional control)
- Highly standardized technologies and workflows available
- Internationally accepted benchmarking project
 - Technologies,
 - Project management,
 - Monitoring,
 - Data & Know how management

Long Term and Post Remedial Activities

- Water treatment
- Care and maintenance of restored land
- Care and maintenance of ancillary mine workings
- Mine damage control and compensation
- Long-term environmental monitoring
- Management of data, documents and information

Thank you very much for your attention

